
Introduction to the
Programming Language Occam

By

Dr. Daniel C. Hyde
Department of Computer Science

Bucknell University
Lewisburg, PA 17837
hyde@bucknell.edu

Updated March 20, 1995

Copyright 1995 by Dr. Daniel C. Hyde

2 Introduction to the Programming Language Occam

Table Of Contents

1 Introduction..3

1.1 The Inception of Occam..3
1.2 Occam and the Transputer ..4
1.3 Versions of Occam..4

2 The Occam Concurrency Model ..5

3 The Occam Language ..6

3.1 Cosmetic Features ...6
3.2 Program Structure ...6
3.3 Occam Process ..6
3.4 Primitive Actions ..6
3.5 Data Structures..7
3.6 Constructors ..8
3.7 SEQ ...8
3.8 PAR...8
3.9 IF ...9
3.10 WHILE..9
3.11 ALT...10
3.12 Simple Occam Program ..11
3.13 PROCs...11
3.14 Replicators ..12
3.15 Time ..13

4 A Methodology for Developing Occam Programs ..13

5 Extended Example Demonstrating the Methodology13

6 Conclusion ...19

 7 References..20

Introduction to the Programming Language Occam 3

1 Introduction

Occam1 is a parallel programming language developed in Great Britain. This Chapter
describes the language, the circumstances surrounding its creation and its relationship to
Inmos’ Transputer. Occam is a good language for exploring the ideas of the message
passing style of parallel programming. It has the important advantage that for a modest
investment one can write truly parallel programs executing on an ensemble of
Transputers.

1.1 The Inception of Occam

Occam is a parallel programming language developed by David May [May, 83] at
Inmos Limited, Bristol, England. The language is one of several parallel programming
languages based on Tony Hoare’s CSP (Communicating Sequential Processes) [Hoare,
78]. A more careful treatment of CSP is in Hoare’s book on CSP [Hoare, 85]. Using
CSP as a basis, the researchers at Inmos developed an Occam concurrency model. From
the Occam model, they developed the programming language Occam. The name is de-
rived from William of Occam, a thirteenth century philosopher. Occam’s Razor or the
ancient philosophical principle of “keep things simple,” is attributed to William. A pri-
mary goal of the Occam language is to keep the language simple, hence the name.

1.2 Occam and the Transputer

From the Occam model, Inmos developed a hardware chip to support their concur-
rency model. This hardware is in the form of a very large scale integration (VLSI) inte-
grated chip (IC) called the Transputer [Walker, 85; Whitney-Strevens, 85]. The
Transputer (Inmos part number T800) is a 32-bit microprocessor (20 MHz clock) that
provides 10 MIPS (million instructions per second) and 2.0 MFLOPS (million floating
point operations per second) processing power with 4K bytes of fast static RAM
(Random Access Memory) and concurrent communication capability all on a single chip.
Though Occam is a high-level language, it can be viewed as the assembly language for
the Transputer. Unlike most microprocessors, e. g., the M68000, the definition of the
operations of the Transputer is in terms of the Occam model and not machine language.
Because the Transputer is designed to execute Occam, the compiler can generate very ef-
ficient and compact machine code. Besides being a high performance microprocessor
(half the speed of a VAX 8600), the Transputer has on its chip four (4) serial bi-direc-
tional links (each 20 Megabits per second) to provide concurrent message passing to
other Transputers. The “channels” in the Occam language are mapped to these hardware
links which connect by way of twisted pairs of wires to other Transputers. The
Transputer hardware supports concurrency by scheduling (time-slicing), in round-robin
fashion, an arbitrary number of Occam concurrent processes. The language and the
hardware are so designed that an Occam program consisting of a collection of concurrent
processes may execute on one Transputer (via time slicing between the different concur-
rent processes) or be spread over many Transputers with little or no change in the Occam
code. Therefore, the designer can develop his or her Occam program on one Transputer,
and if higher performance is required, can spread the Occam processes over a network of
interconnected Transputers.

1 Occam and Transputer are registered trademarks of Inmos Limited.

4 Introduction to the Programming Language Occam

The original Transputer (T414), having no floating point unit and only 2 Kbytes of
RAM, became available in 1985. Two years later, the T800 Transputer was introduced
and is used quite widely in many vendor products. Inmos is currently developing a new,
faster version of the Transputer called the “T9000,” which is scheduled to be available
the middle of 1992. The T9000 will be a 150 MIPS microprocessor with a 20 MFLOPS
floating point unit. The four links of the T800 will be replaced by more “virtual” links,
with each link’s speed at 100 Megabits per second. Memory on chip will be increased
from 4 K bytes to 16 K bytes and will include memory mapping and memory protection.

1.3 Versions of Occam

The first version of Occam was distributed by Inmos to research laboratories and uni-
versities in 1983 [May, 83]. This version of Occam has become known as Occam 1 and
was distributed in various forms. One form, the Portakit, was a FORTRAN source pro-
gram which was ported to many machines but was very slow and contained errors in the
Occam model. Another common Occam 1 version was the VAX VMS version, which
Inmos distributed to universities for a modest cost of $100. This version corrected most
of the errors of the Portakit.

From the experience gained in the three intervening years (1983-1986), David May
and his group at Inmos have developed an enhanced version of Occam called Occam 2
[May, 86]. In Occam 2, the Occam model of concurrency has not changed; however,
Inmos has added many features which we have come to expect in a modern high-level
programming language, notably types and type checking (strong type checking as in
Pascal). For the numerical programmer, important new features added were floating
point arithmetic and multi-dimensional arrays. In 1988, David May added protocols on
the Occam channels, user defined functions and “include” files to Occam 2 [Inmos, 88].
David May is currently working on Occam 3.

Inmos currently supports Occam on a variety of platforms including VAX VMS, IBM
PC compatibles and SUN workstations. These all require a board (containing one or
more Transputers) to be installed in a slot in the platform. Two development systems are
available. The older one is called TDS (Transputer Development System), which has it
own folding editor, compiler and linker all integrated into one bundle. The newer system
is called the Inmos Toolset, which is an unbundled set of tools with the advantage that
users are allowed to use tools under their familiar development environment, e. g.,
“make” in Unix.

This book will only discuss the latest version of Occam 2. Also, it uses the Inmos
Toolset version of Occam in all of its examples.

2 The Occam Concurrency Model
The Occam model supports concurrency, i. e., true parallelism on several processors

or simulated parallelism on one processor by way of time-slicing. The model is based on
concurrent processes. For an excellent introduction into concurrent programming, see
Ben-Ari’s book entitled Principles of Concurrent and Distributed Programming [Ben-
Ari, 1990].

 In Occam, communication between concurrent processes is achieved by passing mes-
sages along point to point channels. Point to point means that the channel’s source and
destination must be at one point or reside in one concurrent process. Below, process P1
can send a message by way of channel C to process P2.

Introduction to the Programming Language Occam 5

P1 P2C

Fig. 1 Process P1 Sends a Message Along Channel C to Process P2

To alleviate many problems caused by interference when sharing variables between
concurrent processes, all communication between concurrent processes in Occam must be
by way of channels. Hence, there are no shared variables in Occam. (Actually, two con-
current processes can both read a variable, but one cannot read while the other writes into
a shared variable.) Therefore, Occam reflects the message-passing model of parallel
computation that is supported by the Transputer hardware with its local memory, i. e., no
global memory, and communication links.

The communication on an Occam channel is synchronous. When either the sender or
the receiver arrives at the proper place in the code, the first to arrive waits for the other.
Once synchronized, the message is transferred between the two, then they continue exe-
cuting. This action is similar to an Ada rendezvous. A consequence of this style of
communication is that it provides no automatic buffering. If buffering is desired, an in-
termediate process may be inserted between the two processes. One advantage of this
scheme is that one language feature performs both synchronization and message passing.

3 The Occam Language
This section is an overview of the Occam 2 language. For a more definitive statement

of the language, see the Occam 2 Reference Manual [Inmos, 88].

3.1 Cosmetic Features

All reserved words must be in capital letters. Spaces are delimiters. Each construct
must be indented two spaces to show structure. This indenting has the potential to cause
grief for programmers, but any problems are alleviated by Inmos’ good folding editor.
Occam is line oriented, which means each statement starts on a new line, possibly in-
dented. Continuation to the next line is possible by breaking an expression at an operator,
semicolon or comma. Comments are designated by -- to the end of the line.

3.2 Program Structure

The structure of a program is a process with declarations preceding it.
 <declares>
 <process>

An example:
 INT j:
 SEQ
 j := 1
 j := j + 1

3.3 Occam Process

6 Introduction to the Programming Language Occam

The Occam “process” can be considered a generalization of “statement” in other lan-
guages, e. g., Pascal. However, the Occam process may not fit your intuitive idea of pro-
cess, e. g., an Occam process is different from a process as used in most operating sys-
tems texts. For example, two Occam processes need not be “concurrent processes.” If
the Occam concept of process confuses you at first, think of a process as an “action,” i. e.,
something that is done.

3.4 Primitive Actions

In Occam, there are five primitive actions (called primitive processes in Occam after
Hoare’s CSP): assignment, receive, send, SKIP and STOP.

 PRIMITIVE SYNTAX EXAMPLE
 assignment <variable> := <expression> x := y + 1
 receive <channel> ? <variable> Ch ? x
 send <channel> ! <expression> Ch ! y + 1
 SKIP SKIP SKIP
 STOP STOP STOP

a). assignment - assigns a variable the value of an expression.

b). receive - receives value from a channel. Uses “?” to signify a query.

c). send - sends expression value on a channel. Uses “!” to signify an exclamation.

d). SKIP - do nothing and terminate the process, i. e., no operation.

e). STOP - do nothing and never terminate the process, i. e., never get to the next pro-
cess.

You may wonder why “!” and “?” rather than, for example, SEND and RECEIVE.
The notation is straight from Hoare’s CSP.

In Occam expressions, there is no operator precedence! Therefore, you must use
parentheses to specify the order of operation. For example:

x := 2 * y + 1

is illegal. You must use parentheses as in the following:

x := (2 * y) + 1

In sends and receives, one may use “;” to separate expressions or variables, as in :

ch ! x; y; x + y

3.5 Data Structures

Occam is strongly typed like Pascal and you must declare every variable. Declares
are of the form:

 <type> <one or more identifiers separated by commas> :

Introduction to the Programming Language Occam 7

Types available include INT for integer, BOOL for Boolean, BYTE for character,
REAL32 for 32-bit reals, REAL64 for 64-bit reals and CHAN for channels. For exam-
ple, to declare the variables “x” and “y” to be integer type and “q” a channel with a mes-
sage protocol of a single integer, we use the following:

INT x, y:
CHAN OF INT q:

The only data structures available are arrays. This shortcoming of Occam is rumored
to be alleviated in the forthcoming Occam 3. Array bounds always start at zero as in the
language C.
Multi-dimensioned arrays are available as in the following:

VAL n IS 100:
INT i, j:
[n][n] REAL32 a:
[n+1] CHAN OF ANY links:

SEQ
 SEQ i = 0 FOR n

 SEQ j = 0 FOR n
 a[i][j] := 0.0 (REAL32)

 -- other code

In the above code segment, we defined a constant n to be 100 and declared a 100 by 100
matrix “a” and a vector called “links” of 101 channels which allow ANY type of value to
be passed along them. The last three lines initialize the whole array “a” to zero using
nested replicated SEQs (See section 3.14 on replicators). Also, since the language has
different types of real numbers, we had to explicitly state that 0.0 was a REAL32.

Declarations of identifiers can be done anywhere in the code, i. e., they do not have to
be all at the beginning of a procedure as in Pascal. The scope of an identifier is from
where it is declared to and including the body of the process where it was declared unless
redeclared inside. In the above, the scope of “n” includes the declares after and the body
of the outer SEQ.

Since a major design goal of Occam was secure concurrent programs, the language
does not allow pointers.

3.6 Constructors

Constructors group processes into a process, i. e., they allow a hierarchical nesting of
processes like the BEGIN-END nesting of statements in Pascal. All constructors may
group N processes (except WHILE).

3.7 SEQ

If several processes are to be executed in sequential order, the SEQ constructor is
used. For example,

 SEQ
 a := 3
 b := a + 5
 c := a - 5

8 Introduction to the Programming Language Occam

performs three primitive processes in sequential order. To show the nested structure of
the constructs, the code is indented two spaces.

 SEQ -- Processes p1 and p2 are done sequentially.
 p1
 p2

The two dashes together indicate the start of a comment on the end of a line.

3.8 PAR

If several processes are to be performed concurrently (true parallelism or simulated
parallel by time-slicing), the PAR construct is used. Below are two primitive processes
in parallel.

 PAR
 INT x:
 ch1 ? x -- receive from channel ch1
 INT y:
 ch2 ? y -- receive from channel ch2

In general, any number of processes - primitive or constructors - can be executed in
parallel. The whole construct terminates when all of the PAR’s components terminate.

 PAR -- p1, p2 and p3 are conceptually performed in parallel.
 p1 -- The whole construct terminates when all
 p2 -- three p1, p2 and p3, terminate.
 p3

Below is an example using a parallel constructor and channel communication. The
two WHILE loops are performed in parallel with the top process communicating with the
bottom process through the channel “comms”.

P1 P2commsbuffer.in buffer.out

Fig. 2 Two buffer Processes

 CHAN OF BYTE comms, buffer.in, buffer.out:
 PAR
 WHILE TRUE
 BYTE x:
 SEQ
 buffer.in ? x
 comms ! x
 WHILE TRUE
 BYTE y:
 SEQ
 comms ? y
 buffer.out ! y

3.9 IF

Introduction to the Programming Language Occam 9

To select a process depending on a Boolean expression, Occam has an IF constructor.
Where Pascal has a binary choice, the Occam IF is a multi-way selector.

 IF -- standard IF with N way choice. The pi is selected
 <Boolean exp1> -- for the first Boolean expression true.
 p1
 <Boolean exp2>
 p2
 <Boolean exp3>
 p3

The process is selected in which the first Boolean expression is evaluated true. If no
Boolean expression is true, then the IF construct acts like a STOP (an abort).

 IF
 a > b
 c := 3
 a < b
 c := 4
 TRUE
 SKIP

Here, the Boolean expression TRUE will catch the case where “a” equals “b” and acts
like an “otherwise” in other languages. Programmers should always include a TRUE as
the last case.

3.10 WHILE

To repeat a process, Occam has the WHILE construct.

 WHILE <Boolean Exp> -- Standard WHILE loop.
 p

For example:

 WHILE i < 10
 i := i + 1

3.11 ALT

Many times one needs to select a process (an ALTernative) depending on a condition
which is more than a Boolean expression (as in an IF). These conditions are called
guards (from Dijkstra’s guards). Guards in Occam can depend on receive channels being
ready, timers, or combinations of both with Boolean expressions.

Starting at the top guard and evaluating each guard, the ALT selects one and only one
process, depending on the first guard to be satisfied. If no guards are satisfied, then the
ALT waits for a guard to be satisfied.

 ALT
 ch1 ? x
 A[1] := x
 ch2 ? x
 A[2] := x
 time ? AFTER begin.time + (10 * sec)
 SKIP

10 Introduction to the Programming Language Occam

In the above ALT, if the send for ch1, or ch2 is ready, the receive guard will be per-
formed and the assignment statement after it. If no send is ready after 10 seconds, the
timer guard becomes satisfied and the SKIP is selected.

 ALT
 Flag1 & ch1 ? x
 a := 3
 (Flag2 OR Flag3) & Ch2 ? y
 a := 4
 SKIP
 a := -1

In this ALT example, Boolean flags are used to control the receives. If the first two
guards are not satisfied, the SKIP guard immediately is satisfied and “a” is assigned -1.

In general, exactly one pi is selected to be performed, depending on the guards. If
more than one guard is true, the Occam manual says one is selected, i. e., non-determin-
ism is introduced.

 ALT -- Exactly one pi is selected for the satisfied
 <guard1> -- guard. If more than one guard is satisfied,
 p1 -- then one is selected arbitrarily. If no
 <guard2> -- guard is satisfied, then ALT waits until a
 p2 -- guard is satisfied.
 <guard3>
 p3
 . . .
 <guardn>
 pn

The forms of guards are:

 <receive>
 <Boolean exp> & <receive>
 SKIP
 <Boolean exp> & SKIP

where a receive may be a timer.

A variation of the ALT is the PRI ALT which gives priority to the first guards. In all
current implementations of Occam there is no difference between the ALT and PRI ALT:
this means that the alternatives are not treated fairly, for the top guards are checked first.
This can lead to starvation of the guards near the bottom if the top guards are very greedy
and occur often.

3.12 Simple Occam Program

A simple program to compute the square root of the numbers from 1 to 10 is shown.
Note that the indentation shows the structure and that all keywords must be capitalized.
Also, note that the library routines (start with “so.”) use the “SP” protocol on the channels
“keyboard” and “screen”.

#INCLUDE "hostio.inc" -- contains SP protocol
PROC Sqrt.program(CHAN OF SP keyboard, screenn)
 -- Occam 2 program to compute square roots of numbers 1 thru 10
 -- Dan Hyde, Jan 5, 1991

 #USE "hostio.lib" -- I/O library - always include

Introduction to the Programming Language Occam 11

 BYTE key, result:
 REAL32 A:
 SEQ
 so.write.string.nl(keyboard, screen, "Value Square Root")

 SEQ i = 1 FOR 10
 SEQ
 so.write.string(keyboard, screen, "i = ")
 so.write.int(keyboard, screen, i, 2)
 A := REAL32 ROUND i -- type conversion from
 -- integer to real
 so.write.real32(keyboard, screen, SQRT(A), 4, 6)
 so.write.nl(keyboard, screen)

 so.exit(keyboard, screen, sps.success)
:

3.13 PROCs

A PROC names one process and allows parameters to be passed by-value or by-refer-
ence. It is similar to a SUBROUTINE in FORTRAN, i. e., only static allocation of vari-
ables and no recursive activations allowed.

Using PROCs, the buffer example of section 3.8 is redone. Note the passing of
channels in this example.

 -- other parts to program
 PROC buff(CHAN OF BYTE in, out)
 WHILE TRUE
 BYTE x:
 SEQ
 in ? x
 out ! x
 : -- end of buff
 CHAN OF BYTE comms, buffer.in, buffer.out:
 PAR
 buff(buffer.in, comms)
 buff(comms, buffer.out)

A by-value parameter uses the keyword VAL in the PROC heading.

3.14 Replicators

All the constructors, except WHILE, can replicate the construct to combine nearly
identical ones. The replicator variable (“i” in the example below) may be substituted in
the process.

For example, n parallel processes use a vector of n channels to send the elements of
vector A conceptually in parallel. In this case, n must be a constant.

 VAL n IS 10: -- number of processes
 [n] CHAN OF REAL32 Ch:
 PAR i = 0 FOR n
 Ch[i] ! A[i]

Below is an example with a replicated IF. Here, we are writing our own input-an-in-
teger routine instead of using the library routine so.read.echo.int.

12 Introduction to the Programming Language Occam

PROC Input.integer(INT Out)
 VAL Cr IS '*c':
 VAL [10] BYTE Digits IS ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']:
 INT Sum, Sign:
 BYTE Ch:
 BYTE result:
 SEQ
 Sum := 0
 Sign := 1
 so.write.char(keyboard, screen, '?') -- print a prompt
 so.getkey(keyboard, screen, Ch, result)
 so.write.char(keyboard, screen, Ch) -- echo character
 IF
 Ch = '-'
 SEQ
 Sign := -1
 so.getkey(keyboard, screen, Ch, result)
 so.write.char(keyboard, screen, Ch) -- echo character
 TRUE
 SKIP
 WHILE Ch <> Cr -- read digits until carriage return
 SEQ
 IF
 IF i = 0 FOR 10 -- replicated IF; acts like 10 IF statements
 Ch = Digits[i] -- compare to each digit
 Sum := (10 * Sum) + i
 TRUE -- must be an error
 so.write.string(keyboard, screen, "Bad integer")
 so.getkey(keyboard, screen, Ch, result)
 so.write.char(keyboard, screen, Ch) -- echo character
 Out := Sign * Sum
: -- end of Input.integer

3.15 Time

A programmer can declare TIMER variables to utilize a real time clock. This special
variable can be used in ALT guards as in the following:

 VAL one.sec IS 15625: -- number of ticks in second on Transputer
 INT begin.time:
 TIMER time:
 SEQ
 -- some code
 time ? begin.time
 PRI ALT -- wait for a second for send on channel Ch then go on
 Ch ? y
 p1 -- some process
 time ? AFTER begin.time + one.sec
 SKIP

4 A Methodology for Developing Occam Programs
We present a common approach to developing Occam programs. The three steps are

the following:

Step 1: Draw boxes of concurrent processes and lines for channels of communi-
cation. Design the general overall approach.

Introduction to the Programming Language Occam 13

Step 2: Write a PROC for each box. Design boxes that will be replicated and be
independent of position in the diagram.

Step 3: Devise a “harness” of PARs, replicated PARs, and vector of channels for
the parallelism and lines of communication.

5 Extended Example Demonstrating the Methodology

To demonstrate the methodology, we present an example of a four stage pipeline to
find square roots using a Newton Raphson approximation. For the square root of x, we
will use the following:

estimatei+1 = estimatei +
x

2•estimatei

The overall approach is to pass x and the first approximation x/2 into an iteration box
which passes x and its estimate on to another iteration box as shown.

x, x/2 NR
Iteration

x, est x, rootx, estNR
Iteration

NR
Iteration0 1 N-10 1. . .

Fig. 3 Pipeline for Newton Raphson Approximation of Square Root

After N iterations, we receive the answer in root.

We will now develop the Occam program using the three steps stated above.

Step 1: Draw boxes of concurrent processes and lines for channels of communi-
cation. Design the general overall approach.

We designate an Occam concurrent process for each iteration box. We will need a
concurrent process at each end of the pipeline -- one to read the keyboard and another to
write to the screen. A vector of channels called “Links” will connect the pipeline to-
gether. For this example, N, the number of iterations, is 4 or four stages in the pipeline.

Links[0] Links[1] Links[2] Links[3] Links[4]

Keyboard
Screen

Feed.X NR Print.RootNRNRNR
0 1 2 3

Fig. 4 Process Diagram for Pipeline Program

Step 2: Write a PROC for each box. Design boxes that will be replicated and be
independent of position in the diagram.

In this case, we need to write three PROCs - one for each shape of box.

 PROC Feed.X(CHAN OF ANY Out)
 -- read in real numbers and feed X and X/2 to

14 Introduction to the Programming Language Occam

 -- input of pipeline
 REAL32 X:
 BOOL error:
 WHILE TRUE
 SEQ
 so.write.string.nl(keyboard, screen, "Type in a value for X")
 so.read.echo.real32(keyboard, screen, X, error)
 so.write.nl(keyboard, screen)
 Out ! X
 Out ! X / 2.0 (REAL32)
 : -- end of Feed.X

Introduction to the Programming Language Occam 15

 PROC Print.Root(CHAN OF ANY In)
 -- receive X and Root and print them
 REAL32 X, Root:
 WHILE TRUE
 SEQ
 In ? X
 In ? Root
 so.write.string(keyboard, screen, "Square root of ")
 so.write.real32(keyboard, screen, X, 4, 6)
 so.write.string(keyboard, screen, "is ")
 so.write.real32(keyboard, screen, Root, 4, 6)
 so.write.nl(keyboard, screen)
 : -- end of Print.Root

 PROC NR(CHAN OF ANY In, Out)
 -- read in X and current Estimate, compute next iteration and ship out
 REAL32 X, Estimate:
 WHILE TRUE
 SEQ
 In ? X
 In ? Estimate
 Out ! X
 Out ! Estimate + (X / (2.0 (REAL32) * Estimate))
 : -- end of NR

Step 3: Devise a “harness” of PARs, replicated PARs, and vector of channels for
the parallelism and lines of communication.

Below is the whole Occam2 program. Each fold contains the Occam2 code for that
PROC. The harness consists of three processes in a PAR where one is a replicated PAR.
The PROC NR is replicated N times with the appropriate indices of the vector of
channels.

#INCLUDE "hostio.inc" -- contains SP protocol
PROC Newton2(CHAN OF SP keyboard, screen)
 -- Pipeline example based on "Occam Programming Manual", Inmos,
 -- Prentice Hall, 1984, section 2.8.
 -- Computes square root of number by pipeline
 -- of Newton Raphson iterations
 -- Programmed by Dan Hyde, Bucknell University, June, 1987
 -- updated Jan 5, 1991

 #USE "hostio.lib"
 -- insert code for PROC Feed.X
 -- insert code for PROC Print.Root
 -- insert code for PROC NR
 VAL N IS 4: -- number of iterations in pipeline
 [N + 1] CHAN OF ANY Links:
 PAR -- Harness
 Feed.X(Links[0])
 PAR i = 0 FOR N
 NR(Links[i], Links[i + 1])
 Print.Root(Links[N])
: -- end of Main

Even though the above program looks fine, it does not work! Why?

The two concurrent processes Feed.X and Print.Root violate channel usage rules in
Occam. Both try to output to the screen (as well as input from the keyboard). Therefore,
the channel “screen” is not point to point (see section 2). When we try to compile this,

16 Introduction to the Programming Language Occam

the compiler detects the problem and writes the error message “Usage error, parallel in-
puts on ‘keyboard.’” To correct this, the two processes Feed.X and Print.Root were
merged into one called the “Controller” as shown below.

 PROC Controller(CHAN OF ANY Out, In)
 -- read in real numbers and feed X and X/2 to input of pipeline
 -- receive X and current estimate and print them
 REAL32 X, Root:
 BOOL error:
 WHILE TRUE
 SEQ
 so.write.string.nl(keyboard, screen,"Type in a value for X")
 so.read.echo.real32(keyboard, screen, X, error)
 so.write.nl(keyboard, screen)
 Out ! X
 Out ! X / 2.0 (REAL32)
 -- wait to compute the square root
 In ? X
 In ? Root
 so.write.string(keyboard, screen, "Square root of ")
 so.write.real32(keyboard, screen, X, 4, 6)
 so.write.string(keyboard, screen, "is ")
 so.write.real32(keyboard, screen, Root, 4, 6)
 so.write.nl(keyboard, screen)
 : -- end of Controller

Introduction to the Programming Language Occam 17

Here is the complete corrected program.

#INCLUDE "hostio.inc" -- contains SP protocol
PROC Newton2(CHAN OF SP keyboard, screen)
 -- Pipeline example based on "Occam Programming Manual", Inmos,
 -- Prentice Hall, 1984, section 2.8.
 -- Computes square root of number by pipeline
 -- of Newton Raphson iterations
 -- Programmed by Dan Hyde, Bucknell University, June, 1987
 -- updated Jan 5, 1991

 #USE "hostio.lib"

 PROC Controller(CHAN OF ANY Out, In)
 -- read in real numbers and feed X and X/2 to input of pipeline
 -- receive X and current estimate and print them
 REAL32 X, Root:
 BOOL error:
 WHILE TRUE
 SEQ
 so.write.string.nl(keyboard, screen, "Type in a value for X")
 so.read.echo.real32(keyboard, screen, X, error)
 so.write.nl(keyboard, screen)
 Out ! X
 Out ! X / 2.0 (REAL32)
 -- wait to compute the square root
 In ? X
 In ? Root
 so.write.string(keyboard, screen, "Square root of ")
 so.write.real32(keyboard, screen, X, 4, 6)
 so.write.string(keyboard, screen, "is ")
 so.write.real32(keyboard, screen, Root, 4, 6)
 so.write.nl(keyboard, screen)
 : -- end of Controller

 PROC NR(CHAN OF ANY In, Out)
 -- read in X and current Estimate, compute next iteration and ship out
 REAL32 X, Estimate:
 WHILE TRUE
 SEQ
 In ? X
 In ? Estimate
 Out ! X
 Out ! Estimate + (X / (2.0 (REAL32) * Estimate))
 : -- end of NR

 VAL N IS 4: -- number of iterations in pipeline
 [N + 1] CHAN OF ANY Links:

 PAR -- Harness
 Controller(Links[0], Links[N])
 PAR i = 0 FOR N
 NR(Links[i], Links[i + 1])
: -- end of Main

A second possible way to correct the program would be to design a new concurrent
process which acted as a screen manager, i. e., a de-multiplexer of several new channels
from Feed.X and Print.Root. This solution is not shown here.
Below is a run with N = 4, i. e., with four NR processes in the pipeline.

Type in a value for X? 4.0
Square root of 4.0 is 2.0
Type in a value for X? 10.0

18 Introduction to the Programming Language Occam

Square root of 10.0 is 3.162278
Type in a value for X? 100.0
Square root of 100.0 is 10.030495
Type in a value for X? 1000.0
Square root of 1000.0 is 41.22295
Type in a value for X? 10000.0
Square root of 1.0 E+04 is 323.05426
Type in a value for X? 100000.0
Square root of 1.0 E+05 is 3135.61792
Type in a value for X? 1000000.0
Square root of 1.0 E+06 is 3.12606E+04

Notice as N becomes large, the four stages (iterations) do not give a very good esti-
mate of the square root. For example, the square root of 10000 should be 100 not
323.05426.

A second run with ten NR processes or with N = 10.
(Only the line “VAL N IS 4:” was changed.)

Type in a value for X? 4.0
Square root of 4.0 is 2.0
Type in a value for X? 10.0
Square root of 10.0 is 3.162278
Type in a value for X? 100.0
Square root of 100.0 is 10.0
Type in a value for X? 1000.0
Square root of 1000.0 is 31.622776
Type in a value for X? 10000.0
Square root of 1.0 E+04 is 100.0
Type in a value for X? 100000.0
Square root of 1.0 E+05 is 316.229248
Type in a value for X? 1000000.0
Square root of 1.0 E+06 is 1033.84106

The above pipe example is actually a silly way to compute the square root of a num-
ber. On one processor with no parallelism, the program is slow compared to the sequen-
tial algorithm because of time spent in process scheduling and in communication. A
speaker at an Occam conference presented the following timing analysis of the pipeline
example in the Occam Programming Manual [Inmos, 1988]:

Time for pipe Newton-Raphson on one Transputer was 170 microseconds.

Time for sequential Newton-Raphson on one Transputer was 60 microseconds.

Time for pipe Newton-Raphson on 12 Transputers was 30 microseconds.

He observed, “We need to think about our designs carefully.”

Introduction to the Programming Language Occam 19

6 Conclusion
The Occam programming language is a viable language to express concurrency. It is

especially valuable for teaching the concepts of parallel algorithms in the message pass-
ing paradigm.

One of Occam’s redeeming aspects is its simplicity. One only needs to compare it to
other programming languages that support concurrency, e. g., Ada, to be convinced of
Occam’s simplicity. The Occam concurrency model makes it easy to think and reason
about an Occam program as a network of concurrent processes which only passes mes-
sages, i. e., the programmer does not have to deal with shared variables and their associ-
ated problems.

In Occam, one expresses concurrency explicitly at the statement level, i. e., the PAR
construct, while in other languages, e. g., Ada, concurrency can only be expressed im-
plicitly at the procedural level. In a language like Ada, the “heavy” machinery to support
concurrency tends to discourage the programmer from using concurrency. With Occam,
the PAR is a natural and easy construct to use.

Another important goal of Occam is security. Security is not easy to achieve in a
concurrent system, however, Occam makes it a lot easier than most concurrent languages.
In order to support this security, favorite language features, e. g., pointers, dynamic mem-
ory allocation, dynamic process allocation and recursive functions, are missing from
Occam. While a concurrent language like Logical Systems C may be more flexible and
support all of these wonderful features, concurrent C programs are very hard to debug.
Where sequential C gives the programmer the power and flexibility to “shoot oneself in
the foot,” concurrent C compounds the problems many fold. The security that Occam
brings to programming concurrent program is especially important in a student environ-
ment where they are learning the concepts of concurrency while mastering the language.

20 Introduction to the Programming Language Occam

References
Dijkstra, E. W. , “Guarded Commands, Nondeterminacy and Formal Derivations of Programs,”

Communications of the ACM, Vol. 18, 1975, pp. 453-7.

Hoare, C. A. R., “Communicating Sequential Processes,” Comm. ACM, Vol. 21, No. 8, 1978, pp.
666-677.

Hoare, C. A. R., Communicating Sequential Processes, Prentice Hall, 1985.

Inmos Limited, Occam 2 Reference Manual, Prentice Hall, 1988.

Jones, Geraint and Michael Goldsmith, Programming in Occam 2, Prentice Hall, 1988.

May, David, “Occam,” SIGPLAN Notices, Vol. 18, No. 4, April, 1983, pp. 69-79.

May, David, Occam2 Product Definition Manual, Inmos, June, 1986.

May, David and Richard Taylor, “Occam: An Overview,” Microprocessors and Microsystems,
Vol. 8, No. 2, March, 1984, pp. 73-79.

Walker, Paul, “The Transputer,” BYTE, May, 1985.

Whitney-Strevens, Colin, “The Transputer,” SIGARCH Newsletter, Vol. 13, No. 3, June, 1985,
pp. 292-300.

